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1. Introduction

Forty years after the setup of the Homestake experiment [1], the concept of neutrino os-

cillations is well established and generally accepted to explain the solar neutrino puzzle.

Solar [2, 3], atmospheric [4], reactor [5], and accelerator [6] neutrino experiments all made

important contributions to our current knowledge of the neutrino sector. In particular,

one finds that the measured Maki-Nakagawa-Sakata-Pontecorvo (MNSP) leptonic mixing

matrix approximately displays the so-called tri-bimaximal pattern [7, 8]. This fact has
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triggered an overwhelming interest in non-Abelian finite groups as means to explain the

family structure of leptons and quarks.

Although differing in their details, all proposed models augment the Standard Model

(SM) gauge symmetry with a discrete symmetry. If this discrete symmetry G originates

in a continuous gauge symmetry G which is spontaneously broken, one refers to it as a

discrete gauge symmetry. The assumption of a gauge origin has the advantage that the

remnant discrete symmetry G is protected against violations by quantum gravity effects [9].

We therefore require an underlying gauge symmetry of the form

SM × G .

Whenever a new gauge symmetry is added to the SM gauge group, it is necessary to verify

that such an extension is anomaly free. With the above symmetry structure, three new

types of anomalies arise:

SM − SM − G , SM − G − G , G − G − G .

The requirement of anomaly freedom at the level of the continuous gauge symmetry G

results in the so-called discrete anomaly conditions after its breaking to the discrete sym-

metry G ⊂ G.

Ibáñez and Ross [10, 11] were the first to carry out a systematic study of these discrete

anomaly conditions in the case of G = U(1) breaking down to G = ZN . There the potential

anomalies are

SU(3)C − SU(3)C − U(1) , SU(2)W − SU(2)W − U(1) , Gravity − Gravity − U(1) ,

U(1)Y − U(1)Y − U(1) , U(1)Y − U(1) − U(1) , U(1) − U(1) − U(1) ,

where SU(3)C , SU(2)W , and U(1)Y are the Standard Model gauge groups. The investiga-

tion of their discrete versions revealed that the anomalies of the first row severely constrain

the allowed anomaly-free discrete gauge symmetries. Under the assumptions that the light

fermions of the theory, i.e those particles which do not acquire a mass when the U(1) breaks

down to ZN , are solely the Standard Model particles, only a finite number of non-equivalent

ZN symmetries is possible [12]. Adding three right-handed neutrinos to the light particle

content, thus requiring pure Dirac neutrinos, allows an infinity of anomaly-free discrete

gauge symmetries [13].

An analogous systematic study of the discrete anomaly conditions for the case where G

is a non-Abelian finite group is still lacking. It is the purpose of this article to fill this gap

and provide useful constraints on flavor models applying a non-Abelian discrete symmetry.

Since there are only three chiral families in Nature, any candidate finite family group G

should have two- or three-dimensional irreducible representations. This limits the possi-

bilities to finite subgroups of SU(3), SU(2), and SO(3) ≈ SU(2)/Z2. Here we restrict

ourselves to the groups PSL2(7) [14], Z7 ⋊ Z3 [15], ∆(27) [16 – 20], S4 [21 – 23], A4 [24 –

36], D5 [37, 38], and S3 [39 – 45]. The underlying family gauge symmetry Gf must be

non-Abelian, the natural candidates being

Gf = SU(3) , SU(2) , SO(3) .
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Family Group Irreps Index Constraints

High-Energy Gf ρ I(ρ) anomaly conditions

Low-Energy G ri Ĩ(ri) discrete anomaly conditions

Table 1: The notation for the continuous and the discrete family groups, their irreps and the

corresponding indices.

Then, the potential anomalies are1

Gf − Gf − U(1)Y , Gf − Gf − Gf ,

where the cubic anomaly is absent for Gf = SU(2) or SO(3). In order to formulate the

discrete anomaly conditions, we first need to understand how the irreps ρ of Gf decompose

into irreps ri of the finite subgroup G. As this decomposition depends on the finite group

and its underlying gauge group, one has to discuss each case separately. Furthermore,

since the quadratic and the cubic indices of the irreps of Gf enter the original anomaly

conditions, it is necessary to introduce the concept of discrete indices for irreps of G. Table 1

summarizes our conventions and notation before and after the breaking of Gf into G.

In section 2, we present the general method of consistently defining discrete indices

for irreps of G assuming that the underlying family symmetry is SU(3). We discuss the

symmetries PSL2(7) and Z7 ⋊ Z3 explicitly in section 3. The corresponding results for

G = ∆(27),S4,A4,D5,S3 are shown in section 4. In section 5 we consider the possibility

that G originates from SO(3), leading to exactly the same discrete quadratic indices as for

SU(3). Having defined the discrete indices, we determine the discrete anomaly conditions

in section 6. We apply our discrete anomaly conditions to existing examples of flavor

models in section 7 and conclude in section 8. Appendices A and B supplement the proof

of defining discrete indices consistently.

Finally, for the sake of quick reference for model builders, we summarize our discrete

anomaly conditions together with the relevant discrete indices in appendix C.

2. The indices of finite subgroups of SU(3)

It is the purpose of this section to provide a definition of indices for finite subgroups G

of SU(3). The underlying idea is that the finite group should have a gauge origin. As

the continuous gauge symmetry SU(3) is broken, its representations ρ decompose into a

sum of representations ri of G. We will show that one can consistently introduce discrete

indices for the irreps ri of G. These discrete indices can be understood as the vestige of

the SU(3) gauge theory which is supposed to be anomaly free. Therefore, they allow an

1Upon completion of this work we became aware of ref. [46] which focuses on discrete anomalies of the

type G−SM−SM, see also [47]. Notice that such an anomaly does not exist in our approach because there

is no Gf − SM − SM anomaly to begin with.
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extension of the well-known discrete anomaly conditions for Abelian symmetries [10 – 13]

to the non-Abelian case.

As a starting point, let us briefly recapitulate how the indices of SU(3) irreps are

defined. The algebra of SU(3) is given by the Gell-Mann matrices λa, a = 1, . . . , 8. The

3 × 3 matrices satisfy [48, 49]

λa λb =
2δab

3
1 + i fabc λc + dabc λc ,

where δab denotes the Kronecker symbol, fabc are the (antisymmetric) structure constants

and dabc the (symmetric) d-coefficients of SU(3). Denoting the generators of the represen-

tation ρ of SU(3) by T
[ρ]
a , we can determine the following traces

Trace
({

T [ρ]
a , T

[ρ]
b

})
= ℓ(ρ) δab , (2.1)

Trace
({

T [ρ]
a , T

[ρ]
b

}
T [ρ]

c

)
= A(ρ)

dabc

2
, (2.2)

with { , } being the anticommutator. ℓ(ρ) and A(ρ) are respectively the quadratic and the

cubic index of ρ. These two indices correspond to the two fundamental Casimir operators

of SU(3). Applying the normalization in which the generators of the irrep ρ = 3 are given

by T
[3]
a = λa/2 we obtain

ℓ(3) = ℓ(3) = 1 , A(3) = − A(3) = 1 ,

for the fundamental irrep 3 and its complex conjugate 3. For higher irreps ρ of SU(3), the

indices I(ρ) = ℓ(ρ), A(ρ) can be calculated recursively from the composition relation [50 –

52]

I(ρ ⊗ σ) = d(ρ) I(σ) + I(ρ) d(σ) , (2.3)

where d(ρ) is the dimension of ρ. For the irreps up to dimension 27 one finds the values

listed in table 2.

When SU(3) breaks down to the finite subgroup G, the irreps ρ decomposes into

irreps ri of the finite subgroup with multiplicities ai. We have

ρ =
⊕

i

ai ri , (2.4)

where the sum is over all irreps of the finite group. Since this breaking process must be

consistent with the Kronecker products of G, the irreps ri inherit discrete indices Ĩ(ri) =

ℓ̃(ri), Ã(ri) from their parent irreps. Assuming that these discrete indices Ĩ(ri) are well-

defined, we introduce the quantity

I(ρ) = ai Ĩ(ri) , (2.5)

to show that

I(ρ) = I(ρ) mod NI , (2.6)

holds true for all irreps ρ. The integer NI depends only on the type of index (quadratic or

cubic) and the finite subgroup G. Before proving eq. (2.6) for individual finite groups G,

we outline the general procedure.
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Irreps ρ of SU(3) ℓ(ρ) A(ρ)

(10) : 3 1 1

(01) : 3 1 −1

(20) : 6 5 7

(02) : 6 5 −7

(11) : 8 6 0

(30) : 10 15 27

(21) : 15 20 14

(40) : 15′ 35 77

(05) : 21 70 −182

(13) : 24 50 −64

(22) : 27 54 0

Table 2: The quadratic and the cubic indices of the smallest irreps of SU(3).

Evaluation of eq. (2.6) for the smallest SU(3) irreps can be used to “guess” the discrete

indices Ĩ(ri) and the value of NI . Once these numbers are given, it is possible to prove by

induction that eq. (2.6) is valid for all higher irreps of SU(3) as well.2 Since these higher

irreps can be obtained by successive multiplication with smaller irreps, the inductive step

consists in showing the validity of eq. (2.6) for the product ρ ⊗ σ, where σ is an SU(3)

irrep which decomposes as

σ =
⊕

i

bi ri . (2.7)

It is argued in appendix A that we need only consider σ = 3,3 to prove our proposition.

At this stage, however, we keep our presentation general.

• For ρ ⊗ σ, the left-hand side of eq. (2.6) is obtained from eq. (2.3), yielding

I(ρ ⊗ σ) = ai d(ri) I(σ) +
(
I(ρ) mod NI

)
d(σ)

= ai

[
d(ri) I(σ) + Ĩ(ri) d(σ)

]
︸ ︷︷ ︸

≡f i
I
(σ)

mod d(σ)NI , (2.8)

with d(ri) denoting the dimension of the irrep ri. Notice that we have assumed

eq. (2.6) for the irrep ρ in the first step. Variation of ρ in this equation changes the

parameters ai whereas the factors f i
I (σ) remain unaffected.

• Next we consider the right-hand side of eq. (2.6) for ρ ⊗ σ. This representation

decomposes into the irreps of the finite group as

ρ ⊗ σ = ai bj ri ⊗ rj = ai bj Kij
k rk . (2.9)

Kij
k are the multiplicities of the irrep rk in the Kronecker product ri ⊗ rj. We get

I(ρ ⊗ σ) = ai bj Kij
k Ĩ(rk) = ai

[
Ĩ(ri ⊗ bjrj)

]
︸ ︷︷ ︸

≡fi
I
(σ)

, (2.10)

2We thank Dr. Yuji Tachikawa for his inductive proof for the discrete cubic index of PSL2(7).

– 5 –



J
H
E
P
0
7
(
2
0
0
8
)
0
8
5

where, in the last step, we require Ĩ(· · · ) to be linear in its argument. Again the

factors f i
I(σ) depend only on σ and i but not on ρ.

With the above remarks, the proof of eq. (2.6) boils down to showing that

f i
I (σ) = f i

I(σ) mod NI . (2.11)

In the following sections we will discuss various finite subgroups of SU(3), presenting the

decomposition of the smallest SU(3) irreps, listing the “guessed” values for NI and the

discrete indices, and finally proving that these definitions satisfy eq. (2.11) for σ = 3,3.

Thus the concept of discrete indices is shown to be consistent.

3. Indices of PSL2(7) and Z7 ⋊ Z3

3.1 The group PSL2(7)

As our first example, we discuss the case of PSL2(7) which is the unique simple subgroup

of SU(3) with complex three-dimensional irreps. Including the singlet, it has six irreps ri

r0 = 1, r1 = 3, r2 = 3, r3 = 6, r4 = 7, r5 = 8 .

The decomposition of the SU(3) irreps into these has been worked out in ref. [14]. For the

smallest irreps we have:

SU(3) ⊃ PSL2(7)

(10) : 3 = 3

(01) : 3 = 3

(20) : 6 = 6

(02) : 6 = 6

(11) : 8 = 8

(30) : 10 = 3 + 7

(21) : 15 = 7 + 8

(40) : 15′ = 1 + 6 + 8

(05) : 21 = 3 + 3 + 7 + 8

(13) : 24 = 3 + 6 + 7 + 8

(22) : 27 = 6 + 6 + 7 + 8

Due to this decomposition, the discrete indices of most PSL2(7) irreps ri can be simply

set equal to the indices of the corresponding SU(3) irreps. Since both, the 6 and the 6 of

SU(3) decompose into the 6 of PSL2(7), we already see that the cubic index Ã(ri) can

only be defined modulo NA = 14. As for the 7, we observe that eq. (2.6) requires

I(10) = Ĩ(3) + Ĩ(7) mod NI , (3.1)

thus fixing Ĩ(7) modulo NI . Having defined the values for all Ĩ(ri), one can easily determine

NI from the higher irreps of SU(3). For the quadratic index we obtain from the 15′ that

– 6 –
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Nℓ = 24. These integers and the discrete indices of the PSL2(7) irreps are listed in

table 3(a).

Before proving that our assignments are consistent with eq. (2.6) for all irreps ρ of

SU(3), we consider three examples.

(i) ρ = 3. This is a trivial case, since the 3 of SU(3) corresponds to the 3 of PSL2(7).

eq. (2.6) then reads

1 = ℓ(3) = ℓ̃(3) mod 24 = 1 ,

1 = A(3) = Ã(3) mod 14 = 1 .

(ii) ρ = 3. Similar to (i) we get

1 = ℓ(3) = ℓ̃(3) mod 24 = 1 ,

−1 = A(3) = Ã(3) mod 14 = −1 .

(iii) ρ = 27. This representation of SU(3) decomposes into 6+6+7+8 of PSL2(7).

Inserting the discrete indices of table 3(a) into eq. (2.6) we obtain

54 = ℓ(27) = 2 ℓ̃(6) + ℓ̃(7) + ℓ̃(8) mod 24 = 30 mod 24 ,

0 = A(27) = 2 Ã(6) + Ã(7) + Ã(8) mod 14 = 14 mod 14 .

The first two examples serve as the basis3 of our proof of eq. (2.6) for the group

PSL2(7). As discussed in section 2 and appendix A, the inductive step consists in showing

that eq. (2.11) holds true for σ = 3,3:

• The left-hand side, i.e. the factors f i
I (σ), can be calculated easily using only the

information in table 3(a). We have

f i
I (3) = d(ri) + 3 Ĩ(ri) , (3.2)

f i
I (3) = (−1)κ d(ri) + 3 Ĩ(ri) , (3.3)

with κ = 0 (or 2) for the quadratic index I = ℓ, whereas κ = 1 (or 3) for the cubic

index I = A. The explicit values for both types of indices and all six irreps ri of

PSL2(7) are given in the first table of appendix B.

• In order to calculate the right-hand side, i.e. the factors

f i
I(σ) = Ĩ(ri ⊗ bjrj) , (3.4)

we need to know the Kronecker products of the finite group. For PSL2(7) they can

be found in ref. [14]. Since σ is constrained to be either 3 or 3, only the following

subset of all Kronecker products is necessary.

3See appendix A, in particular the Young tableaux of eq. (A.1) with k = 1.
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Relevant PSL2(7) Kronecker Products

3 ⊗ 3 = 3a + 6s

3 ⊗ 3 = 1 + 8

3 ⊗ 3 = 3a + 6s

3 ⊗ 6 = 3 + 7 + 8

3 ⊗ 6 = 3 + 7 + 8

3 ⊗ 7 = 6 + 7 + 8

3 ⊗ 7 = 6 + 7 + 8

3 ⊗ 8 = 3 + 6 + 7 + 8

3 ⊗ 8 = 3 + 6 + 7 + 8

Thus the factors f i
I(σ) can be readily determined from

ai f i
I(3) = ai Ĩ(ri ⊗ 3)

= a0 Ĩ(3) + a1

[
Ĩ(3) + Ĩ(6)

]
+ a2

[
Ĩ(1) + Ĩ(8)

]
+ a3

[
Ĩ(3) + Ĩ(7) + Ĩ(8)

]

+ a4

[
Ĩ(6) + Ĩ(7) + Ĩ(8)

]
+ a5

[
Ĩ(3) + Ĩ(6) + Ĩ(7) + Ĩ(8)

]
, (3.5)

ai f i
I(3) = ai Ĩ(ri ⊗ 3)

= a0 Ĩ(3) + a1

[
Ĩ(1) + Ĩ(8)

]
+ a2

[
Ĩ(3) + Ĩ(6)

]
+ a3

[
Ĩ(3) + Ĩ(7) + Ĩ(8)

]

+ a4

[
Ĩ(6) + Ĩ(7) + Ĩ(8)

]
+ a5

[
Ĩ(3) + Ĩ(6) + Ĩ(7) + Ĩ(8)

]
, (3.6)

for both types of indices I = ℓ,A. Their values are calculated and tabulated in

appendix B.

Having obtained the factors f i
I (σ) and f i

I(σ) numerically, we can compare them one by

one. Bearing in mind that our calculations are only modulo NI , we find that eq. (2.11) is

truly valid for both the quadratic as well as the cubic index. Furthermore, the comparison

also reveals that our values for NI are the maximally allowed ones. Of course, all statements

in this section would remain true if one were to replace all NI by N ′

I = NI/p where p is

an integer. For instance, the cubic index could be defined modulo 7 instead of modulo 14.

This completes our proof of eq. (2.6) for the group PSL2(7), with the discrete indices given

in table 3(a).

3.2 The group Z7 ⋊ Z3

PSL2(7) has two maximal subgroups, one of which is the Frobenius group Z7 ⋊ Z3, see

e.g. ref. [15]. It has the following five irreps ri.

r0 = 1, r1 = 1′, r2 = 1′, r3 = 3, r4 = 3 .

The decomposition of SU(3) irreps into these can be easily obtained from the embedding

sequence SU(3) ⊃ PSL2(7) ⊃ Z7 ⋊ Z3 [14], yielding the result:

– 8 –
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SU(3) ⊃ Z7 ⋊ Z3

(10) : 3 = 3

(01) : 3 = 3

(20) : 6 = 3 + 3

(02) : 6 = 3 + 3

(11) : 8 = 1′ + 1′ + 3 + 3

(30) : 10 = 1 + 3 + 2 · 3

(21) : 15 = 1 + 1′ + 1′ + 2 · (3 + 3)

(40) : 15′ = 1 + 1′ + 1′ + 2 · (3 + 3)

(05) : 21 = 1 + 1′ + 1′ + 3 · (3 + 3)

(13) : 24 = 1 + 1′ + 1′ + 3 · 3 + 4 · 3

(22) : 27 = 1 + 1′ + 1′ + 4 · (3 + 3)

Notice that 1′ and 1′ always come in pairs in the decomposition of the smallest SU(3) irreps.

It is easy to prove this peculiarity for arbitrary irreps of SU(3) by induction. Assume that

ρ decomposes as

ρ = a0 1 + a1 (1′ + 1′) + a3 3 + a4 3 . (3.7)

Using eq. (2.9) and the Z7 ⋊ Z3 Kronecker products [14]

Z7 ⋊ Z3 Kronecker Products

1′ ⊗ 1′ = 1′

1′ ⊗ 1′ = 1

3 ⊗ 1′ = 3

3 ⊗ 1′ = 3

3 ⊗ 3 = (3 + 3)s + 3a

3 ⊗ 3 = 1 + 1′ + 1′ + 3 + 3

we obtain the decomposition of the representations ρ ⊗ 3 and ρ ⊗ 3.

ρ ⊗ 3 = a4 1 + a4 (1′ + 1′) + (a0 + 2a1 + a3 + a4)3 + (2a3 + a4)3 ,

ρ ⊗ 3 = a3 1 + a3 (1′ + 1′) + (a3 + 2a4)3 + (a0 + 2a1 + a3 + a4)3 .

Of course, these are the decompositions of reducible SU(3) representations, i.e. of sums of

SU(3) irreps. As argued in appendix A, such a sum contains only one new SU(3) irrep.

Assuming that the other known irreps decompose with the 1′ and 1′ appearing in pairs,

this is true also for the new SU(3) irrep and therefore for all.

Since eq. (3.7) holds for any irrep ρ, the discrete indices cannot be defined uniquely. We

take this fact into account by introducing the parameters x and y. For physical applications

of the discrete indices, it might be convenient to choose specific values, see section 6. At this

point, however, we want to stay as general as possible, thus leaving x and y undetermined.

It should also be stressed that there is nothing wrong with having non-integer values.

Table 3(b) shows the discrete indices of Z7 ⋊Z3 ⊂ SU(3). The values of NI for both types

of indices are determined by the decomposition of the 6.

– 9 –
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(a) Discrete indices of PSL2(7) ⊂ SU(3).

PSL2(7)

irreps

ℓ̃(r)

(Nℓ = 24)

Ã(r)

(NA = 14)

1 0 0

3 1 1

3 1 −1

6 5 7

7 14 0

8 6 0

(b) Discrete indices of Z7 ⋊ Z3 ⊂ SU(3).

Z7 ⋊ Z3

irreps

ℓ̃(r)

(Nℓ = 3)

Ã(r)

(NA = 7)

1 0 0

1′ x y

1′ 1 − x −y

3 1 1

3 1 −1

Table 3: The definition of the discrete indices of the finite groups PSL2(7) and Z7 ⋊Z3 originating

in the continuous group SU(3). x and y can take arbitrary values.

This assignment trivially satisfies eq. (2.6) for ρ = 3,3. In order to prove it for all

other SU(3) irreps, we need to compare f i
I (σ) and f i

I(σ) for σ = 3,3. The former, i.e.

f i
I (σ), is calculated from eqs. (3.2) and (3.3) using table 3(b). f i

I(σ) on the other hand is

determined from eq. (3.4) with the Kronecker products and the discrete indices of Z7 ⋊Z3.

Their explicit values for both types of indices are listed in appendix B. Note that we only

need to compare the sum f 1+2
I (σ) = f 1

I (σ)+f 2
I (σ) with the sum f 1+2

I (σ) = f 1
I (σ)+ f 2

I (σ)

because 1′ and 1′ come in pairs in the decomposition of any SU(3) irrep ρ. This comparison

shows that our definition of the discrete indices for the group Z7 ⋊Z3, given in table 3(b),

satisfies eq. (2.6) and is therefore consistent.

4. Indices of ∆(27), S4, A4, D5, and S3

In this section we discuss the discrete indices for other finite subgroups of SU(3). To be

self-contained, we also list the embedding of their irreps into those of SU(3), as well as their

Kronecker products. However, we refrain from showing explicitly that our definitions of

discrete indices are consistent with eq. (2.6). This can be done analogously to the previous

sections. Our results for the discrete indices are presented in table 4.

4.1 The group ∆(27)

This group, see e.g. ref. [53], has nine one-dimensional irreps, 1r,s with r, s = 0, 1, 2, as well

as two three-dimensional ones, 3 and 3. For the one-dimensional irreps we also write

10 = 10,0 , 11 = 10,1 , 13 = 11,0 , 15 = 11,1 , 17 = 11,2 ,

12 = 11 = 10,2 , 14 = 13 = 12,0 , 16 = 15 = 12,2 , 18 = 17 = 12,1 .

With this notation, the Kronecker products and the decomposition of the smallest SU(3)

irreps are given as:

– 10 –
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∆(27) Kronecker Products

1r,s ⊗ 1r′,s′ = 1r+r′,s+s′

3 ⊗ 1j = 3

3 ⊗ 1j = 3

3 ⊗ 3 = 3 · 3

3 ⊗ 3 = 3 · 3

3 ⊗ 3 = 10 +
∑8

j=1 1j

SU(3) ⊃ ∆(27)

(10) : 3 = 3

(01) : 3 = 3

(20) : 6 = 2 · 3

(02) : 6 = 2 · 3

(11) : 8 =
∑8

j=1 1j

(30) : 10 = 2 · 10 +
∑8

j=1 1j

(21) : 15 = 5 · 3

(40) : 15′ = 5 · 3

(05) : 21 = 7 · 3

(13) : 24 = 8 · 3

(22) : 27 = 3 · (10 +
∑8

j=1 1j)

On the right-hand side of the Kronecker product for the one-dimensional irreps, the sums

r+r′ and s+s′ are modulo 3. Similar to the Z7⋊Z3 case, one can easily show that the one-

dimensional irreps 1j with j = 1, . . . , 8 occur always collectively in the decomposition of

SU(3) irreps. The resulting ambiguity in the definition of the corresponding discrete indices

is expressed by introducing the parameters xk and yk with k = 1, . . . , 7 in table 4(a). The

decomposition of the 6 fixes the values of NI .

4.2 The group S4

Besides Z7 ⋊Z3, this group is the second maximal subgroup of PSL2(7). It has five irreps.

r0 = 1, r1 = 1′, r2 = 2, r3 = 31, r4 = 32 .

The Kronecker products of S4 and its embedding into SU(3) are [14, 21]:

S4 Kronecker Products

1′ ⊗ 1′ = 1

2 ⊗ 1′ = 2

31 ⊗ 1′ = 32

32 ⊗ 1′ = 31

2 ⊗ 2 = (1 + 2)s + (1′)a

2 ⊗ 3i = 31 + 32

3i ⊗ 3i = (1 + 2 + 31)s + (32)a

31 ⊗ 32 = 1′ + 2 + 31 + 32

SU(3) ⊃ S4

(10) : 3 = 32

(01) : 3 = 32

(20) : 6 = 1 + 2 + 31

(02) : 6 = 1 + 2 + 31

(11) : 8 = 2 + 31 + 32

(30) : 10 = 1′ + 31 + 2·32

(21) : 15 = 1′ + 2 + 2·(31 + 32)

(40) : 15′ = 2·(1 + 2 + 31) + 32

(05) : 21 = 1′ + 2 + 2·31 + 4·32

(13) : 24 = 1 + 1′ + 2·2 + 3·(31 + 32)

(22) : 27 = 2·1 + 1′ + 3·2 + 4·31 + 2·32

Notice that the occurrence of both 1′ and 2 is always accompanied by the irrep 31 in the

decomposition of the smallest SU(3) irreps. Again, it is easy to prove this for all irreps of

SU(3) by induction. Assume that ρ decomposes as

ρ = a0 1 + a1 (1′ + 31) + a2 (2 + 31) + a4 32 . (4.1)
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Since 3 and 3 both correspond to the same S4 irrep 32, the two SU(3) representations

ρ⊗3 and ρ⊗3 have the same decomposition. It is obtained from the Kronecker products,

yielding

a4 1 + (a1 + a2) (1′ + 31) + (a1 + a2 + a4) (2 + 31) + (a0 + a1 + 2a2 + a4)32 ,

which is of the same structure as eq. (4.1). Due to this general property of the embedding

of S4 into SU(3), the discrete indices are not defined uniquely. The values for Ĩ(2 + 31) and

Ĩ(1′ + 31) are given by the 6 and the 10 of SU(3), respectively. The 15′ then determines

Nℓ to be 24 for the quadratic index, while NA = 2 for the cubic index because both the 3

and the 3 decompose as a 32 of S4. The results are shown in table 4(b), with the ambiguity

in the definitions parameterized by x and y.

4.3 The group A4

This group is the most popular group in flavor model building. It is a subgroup of S4 and

has four irreps.

r0 = 1, r1 = 1′, r2 = 1′, r3 = 3 .

The Kronecker products of A4 are listed throughout the literature. The decomposition of

the smallest SU(3) irreps can be worked out easily from A4’s embedding in S4 [14].

A4 Kronecker Products

1′ ⊗ 1′ = 1′

1′ ⊗ 1′ = 1

3 ⊗ 1′ = 3

3 ⊗ 3 = 1 + 1′ + 1′ + 2 · 3

SU(3) ⊃ A4

(10) : 3 = 3

(01) : 3 = 3

(20) : 6 = 1 + 1′ + 1′ + 3

(02) : 6 = 1 + 1′ + 1′ + 3

(11) : 8 = 1′ + 1′ + 2 · 3

(30) : 10 = 1 + 3 · 3

(21) : 15 = 1 + 1′ + 1′ + 4 · 3

(40) : 15′ = 2 · (1 + 1′ + 1′) + 3 · 3

(05) : 21 = 1 + 1′ + 1′ + 6 · 3

(13) : 24 = 2 · (1 + 1′ + 1′) + 6 · 3

(22) : 27 = 3 · (1 + 1′ + 1′) + 6 · 3

In this case, the irreps 1′ and 1′ always come in pairs in the decomposition of the SU(3)

irreps. The discrete indices, listed in table 4(c), are again not uniquely determined. As

before NA = 2, while the 10 fixes Nℓ to be 12.

4.4 The group D5

The dihedral group D5 has also been used as a family group. Its four irreps are

r0 = 1, r1 = 1′, r2 = 21, r3 = 22 .

The Kronecker products of D5 as well as its embedding in SU(3) can be found in refs. [37].
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D5 Kronecker Products

1′ ⊗ 1′ = 1

1′ ⊗ 2i = 2i

21 ⊗ 21 = 1 + 1′ + 22

22 ⊗ 22 = 1 + 1′ + 21

21 ⊗ 22 = 21 + 22

SU(3) ⊃ D5

(10) : 3 = 1′ + 21

(01) : 3 = 1′ + 21

(20) : 6 = 2 · 1 + 21 + 22

(02) : 6 = 2 · 1 + 21 + 22

(11) : 8 = 1 + 1′ + 2 · 21 + 22

(30) : 10 = 2 · (1′ + 21 + 22)

(21) : 15 = 1 + 2 · 1′ + 3 · (21 + 22)

(40) : 15′ = 3 · (1 + 21 + 22)

(05) : 21 = 1 + 4 · (1′ + 21 + 22)

(13) : 24 = 2 · (1 + 1′) + 5 · (21 + 22)

(22) : 27 = 4 · 1 + 1′ + 5 · 21 + 6 · 22

Another alternative embedding of D5 in SU(3) is obtained by exchanging the representa-

tions 21 ↔ 22. However, we only spell out the results for the choice shown above. First

notice that the smallest irreps ρ of SU(3) all decompose as

ρ = a0 1 + a1 1′ + a2 21 + a3 22 ,

with a1 + a2 + a3 being even. This can be verified for higher irreps by examining the

decomposition of ρ ⊗ 3 and ρ ⊗ 3, for both of which we find

(a1 + a2)1 + (a0 + a2)︸ ︷︷ ︸
a′

1

1′ + (a0 + a1 + a2 + a3)︸ ︷︷ ︸
a′

2

21 + (a2 + 2a3)︸ ︷︷ ︸
a′

3

22 .

Obviously, the sum a′1 + a′2 + a′3 is even again. This fact has to be taken into account in

the inductive proof of eq. (2.6) where f i
I (σ) and f i

I(σ) are calculated and compared in a

table similar to those shown in appendix B.

The assignment of the discrete indices is somewhat more involved because the 3 of

SU(3) decomposes into two irreps of D5. Writing

Ĩ(1′) = α , Ĩ(21) = β , Ĩ(22) = γ ,

we get

I(3) = I(3) = α + β mod NI ,

I(6) = β + γ mod NI ,

I(15′) = 3 (β + γ) mod NI ,

I(27) = α + 5β + 6 γ mod NI .

For the quadratic index, Nℓ is determined by comparing the 15′ with three copies of the 6,

yielding Nℓ = 20. For the cubic index we have NA = 2. The value of α can be calculated

from

I(3) + I(27) − 6 I(6) = 2α mod NI .

Due to the mod NI we get two discrete solutions, parameterized by ξ = 0, 1 and ζ = 0, 1,

respectively. The values for β and γ are then easily determined from the 3 and the 6.

Table 4(d) lists the results. Notice that these indices are not integer.
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4.5 The group S3

Finally, the last group we consider is S3 with three irreps

r0 = 1, r1 = 1′, r2 = 2 .

The Kronecker products of S3 and its embedding in SU(3) is given below.

S3 Kronecker Products

1′ ⊗ 1′ = 1

1′ ⊗ 2 = 2

2 ⊗ 2 = 1 + 1′ + 2

SU(3) ⊃ S3

(10) : 3 = 1′ + 2

(01) : 3 = 1′ + 2

(20) : 6 = 2 · (1 + 2)

(02) : 6 = 2 · (1 + 2)

(11) : 8 = 1 + 1′ + 3 · 2

(30) : 10 = 1 + 3 · (1′ + 2)

(21) : 15 = 2 · 1 + 3 · 1′ + 5 · 2

(40) : 15′ = 4 · 1 + 1′ + 5 · 2

(05) : 21 = 2 · 1 + 5 · 1′ + 7 · 2

(13) : 24 = 4 · (1 + 1′) + 8 · 2

(22) : 27 = 6 · 1 + 3 · 1′ + 9 · 2

Analogous to the group D5, the SU(3) irreps decompose into irreps of S3 such that the

sum of the multiplicities of 1′ and 2 is even.

For the quadratic index, Nℓ is obtained by comparing the 10 with three copies of the 3,

yielding Nℓ = 12. For the cubic index we have NA = 2. The 6 determines Ĩ(2), again with

two discrete solutions parameterized by ξ and ζ. Then, Ĩ(1′) can be calculated from the 3.

The resulting discrete indices of S3 are given in table 4(e).

5. S4, A4, D5, and S3 as subgroups of SO(3)

So far, we have considered G to be the remnant of a high-energy SU(3) family symmetry.

In fact, this is the only possibility for the finite groups PSL2(7), Z7 ⋊ Z3, and ∆(27).

On the other hand, the groups S4, A4, D5, and S3 can alternatively be embedded into

SO(3).4 Since SO(3) = SU(2)/Z2, the indices of the SO(3) irreps are proportional to the

indices of the odd-dimensional irreps of SU(2). For SU(2), cubic indices are absent, and

the quadratic indices are defined analogously to the SU(3) case

Trace
({

T [ρ]
a , T

[ρ]
b

})
= ℓ(ρ) δab . (5.1)

Choosing T
[2]
a = σa/2, with σa denoting the Pauli matrices, the quadratic index of the

fundamental irrep 2 is normalized to one. The quadratic indices of all higher irreps ρ

of SU(2) can then be obtained recursively from

ℓ(ρ ⊗ 2) = d(ρ) ℓ(2) + ℓ(ρ) d(2) = d(ρ) + 2 ℓ(ρ) . (5.2)

4A non-trivial embedding into SU(2) is not possible since the 2 as well as the other even-dimensional

irreps of SU(2) are spinor-like, whereas the irreps of S4, A4, D5, and S3 are not.
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(a) Discrete indices of ∆(27) ⊂ SU(3); k = 1, . . . , 7.

∆(27)

irreps

ℓ̃(r)

(Nℓ = 3)

Ã(r)

(NA = 9)

10 0 0

1k xk yk

18 −
∑7

k=1 xk −
∑7

k=1 yk

3 1 1

3 1 −1

(b) Discrete indices of S4 ⊂ SU(3).

S4

irreps

ℓ̃(r)

(Nℓ = 24)

Ã(r)

(NA = 2)

1 0 0

1′ 13 − x 1 − y

2 5 − x 1 − y

31 x y

32 1 1

(c) Discrete indices of A4 ⊂ SU(3).

A4

irreps

ℓ̃(r)

(Nℓ = 12)

Ã(r)

(NA = 2)

1 0 0

1′ x y

1′ 4 − x −y

3 1 1

(d) Discrete indices of D5 ⊂ SU(3).

D5

irreps

ℓ̃(r)

(Nℓ = 20)

Ã(r)

(NA = 2)

1 0 0

1′ (5+ξNℓ)/2 (1+ζNA)/2

21 (−3+ξNℓ)/2 (1+ζNA)/2

22 (13+ξNℓ)/2 (1+ζNA)/2

(e) Discrete indices of S3 ⊂ SU(3).

S3

irreps

ℓ̃(r)

(Nℓ = 12)

Ã(r)

(NA = 2)

1 0 0

1′ (−3+ξNℓ)/2 (1+ζNA)/2

2 (5+ξNℓ)/2 (1+ζNA)/2

Table 4: The definition of the discrete quadratic and cubic indices of various finite subgroups

of SU(3), namely ∆(27), S4, A4, D5, and S3. As some irreps of the finite groups do not occur

independently from other irreps in the decomposition of SU(3) irreps, the definitions of the discrete

indices are not always unique. Where present, this ambiguity is parameterized by xk, yk; x, y;

ξ = 0, 1, and ζ = 0, 1, respectively.

The indices of the odd-dimensional irreps turn out to be multiples of four. Hence, a change

of normalization yields the quadratic indices for the smallest irreps of SO(3) shown in

table 5.

In order to define the discrete indices for the irreps ri of G ⊂ SO(3), we must first
determine how the irreps ρ decompose. For the smallest SO(3) irreps, the results are
summarized below.

– 15 –



J
H
E
P
0
7
(
2
0
0
8
)
0
8
5

Irreps ρ of SO(3) ℓ(ρ)

3 1

5 5

7 14

9 30

11 55

Table 5: The quadratic indices of the smallest irreps of SO(3).

SO(3) S4 A4 D5 S3

3 32 3 1′ + 21 1′ + 2

5 2 + 31 1′ + 1′ + 3 1 + 21 + 22 1 + 2·2

7 1′ + 31 + 32 1 + 2·3 1′ + 21 + 2·22 1 + 2·(1′ + 2)

9 1 + 2 + 31 + 32 1 + 1′ + 1′ + 2·3 1 + 2·(21 + 22) 2·1 + 1′ + 3·2

11 2 + 31 + 2·32 1′ + 1′ + 3·3 1 + 2·(1′ + 21 + 22) 1 + 2·1′ + 4·2

Regarding D5 there exists an alternative embedding with the irreps 21 and 22 inter-

changed. Similar to the case of SU(3), it is easy to show that the irreps ρ of SO(3) decom-

pose into irreps ri of G with the multiplicities ai constrained by linear relation. It turns

our that these are identical to the relations we obtained when embedding G into SU(3).

• S4: The 1′ as well as the 2 are always accompanied by an irrep 31.

• A4: The 1′ and the 1′ always come in pairs.

• D5: The sum of the multiplicities of 1′, 21, and 22 is even.

• S3: The sum of the multiplicities of 1′ and 2 is even.

Therefore, the discrete indices are not defined uniquely. From the decompositions of the

smallest SO(3) irreps we can determine ℓ̃(ri), with the arbitrariness parameterized by x

and ξ = 0, 1, respectively.

• S4: First we set ℓ̃(32) = 1. Introducing the parameter x = ℓ̃(31), we find from the

decomposition of the 5 that ℓ̃(2) = 5 − x. Similarly, the 7 fixes ℓ̃(1′) = 13 − x.

Inserting these values for the discrete indices into the decomposition of the 9, we see

that the quadratic indices can only be defined modulo Nℓ = 24.

• A4: Here we have ℓ̃(3) = 1. Defining x = ℓ̃(1′), the decomposition of the 5 yields

ℓ̃(1′) = 4 − x. With these values, one finds that Nℓ = 12.

• D5: Comparing the decomposition of the 5 and the 9 shows that Nℓ = 20. The value

for 2 ℓ̃(22) = 13 mod Nℓ is obtained from combining the SO(3) irreps 3 and 7. With

ξ = 0, 1 this gives ℓ̃(22) = (13 + ξNℓ)/2. Then the 5 fixes ℓ̃(21) = (−3 + ξNℓ)/2.

Finally, from the 3 we get ℓ̃(1′) = (5 + ξNℓ)/2.
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• S3: Comparison of the SO(3) irreps 3 and 7 yields Nℓ = 12. From the 5 we determine

ℓ̃(2) = (5 + ξNℓ)/2. Then we find ℓ̃(1′) = (−3 + ξNℓ)/2 from the 3.

Remarkably, all these quadratic indices are identical to the results obtained in section 4

where S4, A4, D5, and S3 are considered to be subgroups of SU(3). Concerning the

quadratic indices it therefore does not make any difference at all whether G originates in

SU(3) or SO(3). Of course, in the latter case the cubic indices are absent.

6. Discrete anomaly conditions

Having defined the discrete indices for the finite groups PSL2(7), Z7 ⋊ Z3, ∆(27), S4,

A4, D5, and S3, we are now in a position to formulate the corresponding discrete anomaly

conditions. Our starting point is to require anomaly freedom of the underlying continuous

family symmetry Gf . Under the assumption that Gf = SU(3), we obtain two anomaly

cancellation conditions ∑

k

ℓkYk = 0 ,
∑

k

Ak = 0 .

Here k labels the fermions of the complete theory, with ℓk and Ak being the quadratic and

the cubic index corresponding to the particle’s SU(3) irrep. Yk denotes the hypercharge in

the normalization where the left-handed quark doublet has YQ = 1. In the following, we

further assume that no particle k has fractional hypercharge in this normalization.5 After

the breakdown of SU(3) to the non-Abelian finite symmetry G, the SU(3) irreps decompose

into irreps of G. Labeling these by i, the discrete anomaly cancellation conditions can be

obtained from

∑

i=light

ℓ̃i Yi +
∑

i=massive

ℓ̃i Yi = 0 mod Nℓ , (6.1)

∑

i=light

Ãi +
∑

i=massive

Ãi = 0 mod NA , (6.2)

with NI depending on the specific group G. For Gf = SU(2) or SO(3), the cubic anomaly

does not exist so that we are left with eq. (6.1) only. In the following, we evaluate the

sums over the massive degrees of freedom in eqs. (6.1) and (6.2), showing that they can

be incorporated into the right-hand side, in some cases changing the value of NI . Thus we

are lead to the discrete anomaly conditions which constrain the irreps of G assigned to the

light fermions.

6.1 Mass terms and their effects on the anomaly conditions

Before elaborating on the non-Abelian case, it might be useful to remind ourselves of how

massive fermions enter the anomaly equations in a scenario where the discrete symmetry

is ZN [10, 11]. Such an Abelian discrete symmetry arises when a U(1) gauge symmetry gets

5Particles with fractional hypercharge in this normalization are electrically charged. Furthermore, they

cannot decay into Standard Model particles alone, so that the lightest such particle would be stable. Since

dark matter should be neutral, their existence is disfavored.
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spontaneously broken by the vacuum expectation value (VEV) of a SM singlet field with

U(1) charge N . As a result of this breaking, some fermions, the so-called massive fermions,

will have a bilinear mass term whose U(1) charge is an integer multiple of N . Using the

standard conventions, a pair of massive fermionic fields can only contribute an integer

multiple of N/2 to the anomaly equations. Therefore the discrete anomaly conditions are

given modulo N , with N directly related to the spontaneous breaking of the continuous

U(1) symmetry.

The situation becomes more involved with non-Abelian symmetries for two reasons.

First, the details of how Gf breaks down to G are ambiguous as can be seen, e.g., from

the decomposition of SU(3) irreps into irreps of Z7 ⋊ Z3 [cf. above eq. (3.7)]. Even when

restricting to the irreps of SU(3) up to 27, there are six irreps which can acquire a VEV (in

a suitable direction) and leave the discrete symmetry Z7 ⋊ Z3 unbroken. Instead of being

related to the breaking of the continuous to the discrete family symmetry, the values for NI

in the modulo NI of the discrete anomaly equations mainly originate from the definition of

the discrete indices. Second, the possibilities of forming bilinear mass terms in the presence

of a non-Abelian discrete symmetry are constrained by the Kronecker products. Particles

which acquire a mass at the breaking of Gf must have a G invariant bilinear mass term

since the SU(3) irreps which are chosen to break the family gauge symmetry can only get a

VEV in the direction that singles out the singlet 1 of G. In order to discuss the effects of the

massive fermionic fields on the anomaly conditions, it is therefore necessary to determine

those Kronecker products which contain a singlet of the finite group.

There are two types of massive fermionic fields, Majorana particles and Dirac particles.

As Majorana particles are necessarily neutral under any U(1) they don’t contribute to

eq. (6.1). On the other hand, the Dirac degrees of freedom always come in pairs with the

two fields having opposite hypercharge; therefore their contribution to eq. (6.1) is

ℓ̃i1 Yi1 + ℓ̃i2 Yi2 = (ℓ̃i1 − ℓ̃i2)Yi1 .

Below we evaluate this term as well as the contribution of the massive fields to eq. (6.2)

explicitly for the various finite groups in turn.

• PSL2(7): The Kronecker products [14] show that we obtain invariant bilinear terms

from the products 3 ⊗ 3, 6 ⊗ 6, 7 ⊗ 7, 8 ⊗ 8. Applying the discrete indices defined

in table 3(a), there is no contribution of massive fields to eq. (6.1), and only the

sextet yields a non-zero contribution to eq. (6.2). As the 6 is a real representation of

PSL2(7), it can correspond to a Majorana field. In that case, because Ã6 = 7, the

value of NA on the right-hand side of eq. (6.2) is reduced from 14 to 7. Hence we

have ∑

i=light

ℓ̃i Yi = 0 mod 24 ,
∑

i=light

Ãi = 0 mod 7 . (6.3)

• Z7 ⋊ Z3: The bilinear group invariants are obtained from 1′ ⊗ 1′ and 3 ⊗ 3, which

shows that no massive Majorana particles are allowed. Only a Dirac pair of the former

type has a contribution to a discrete anomaly condition which does not automatically
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vanish. From table 3(b) we find that such a Dirac pair adds (2x − 1)Yi in eq. (6.1),

which vanishes modulo 3 for

x =
1

2
or 2 .

The massive Dirac pair then does not contribute to eq. (6.1) at all. This yields
∑

i=light

ℓ̃i Yi = 0 mod 3 ,
∑

i=light

Ãi = 0 mod 7 . (6.4)

• ∆(27): Here the bilinear mass terms stem from the products 12l−1 ⊗ 12l with l =

1, . . . , 4 as well as 3⊗3. Again no massive Majorana particles are possible. Choosing

x2l−1 = x2l with

4∑

l=1

x2l = 0 , and y2l−1 = − y2l ,

for the discrete indices of table 4(a), the massive Dirac particles drop out of eqs. (6.1)

and (6.2), yielding
∑

i=light

ℓ̃i Yi = 0 mod 3 ,
∑

i=light

Ãi = 0 mod 9 . (6.5)

• S4: As mass terms can be built from 1′ ⊗ 1′, 2 ⊗ 2, and 3i ⊗ 3i massive particles

can be of both Majorana as well as Dirac type. Regardless of the value of x they do

not contribute to eq. (6.1). On the other hand, a heavy Majorana particle living in

the irrep 32 adds Ã32
= 1 to eq. (6.2), therefore changing NA from 2 to 1 on the

right-hand side. Taking

y = 0 or 1 ,

all discrete cubic indices are integer, leading to no useful constraint on the light

particle spectrum from eq. (6.2). Using the discrete indices listed in table 4(b) with

arbitrary x, a non-trivial condition only results from eq. (6.1) which reads
∑

i=light

ℓ̃i Yi = 0 mod 24 . (6.6)

• A4: The bilinear invariants are obtained from the products 1′ ⊗ 1′ and 3⊗ 3. For

x = 2 or 8 ,

massive particles do not contribute to eq. (6.1). The possibility of having a heavy

Majorana particle in the irrep 3 reduces NA from 2 to 1 on the right-hand side of

eq. (6.2). Irrespective of the value for y, a Dirac pair with the mass term 1′ ⊗ 1′

does not contribute to eq. (6.2). Therefore the resulting discrete anomaly condition

is non-trivial; it is equivalent to the requirement of having as many 1′ as there are 1′

in the light particle content. Explicitly, with the indices defined in table 4(c), the

two discrete anomaly conditions are given as
∑

i=light

ℓ̃i Yi = 0 mod 12 ,
∑

i=light

Ãi = 0 mod 1 . (6.7)
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• D5: The masses of heavy particles can be generated from the products 1′ ⊗ 1′ and

2i⊗2i. Such fields can be of either Majorana or Dirac type. They do not contribute to

eq. (6.1). However, each Dirac particle adds an odd integer to eq. (6.2); allowing for

heavy Majorana particles, we obtain half-odd integer contributions. Since the discrete

cubic indices are multiples of 1
2 , no useful constraint is obtained from eq. (6.2). With

the indices given in table 4(d), the discrete anomaly condition obtained from eq. (6.1)

yields
∑

i=light

ℓ̃i Yi = 0 mod 20 . (6.8)

• S3: The bilinear invariants can originate from 1′ ⊗ 1′ and 2 ⊗ 2. As in the case of

the group D5, massive particles do not contribute to eq. (6.1), while their possible

existence renders eq. (6.2) useless. With the indices shown in table 4(e), the non-

trivial discrete anomaly condition reads

∑

i=light

ℓ̃i Yi = 0 mod 12 . (6.9)

Eqs. (6.3)–(6.9) show that the discrete anomaly conditions on the light particle spec-

trum depend on the finite group G. All are subgroups of SU(3), however, S4, A4, D5,

and S3 can alternatively be embedded into SO(3). As the discrete quadratic indices are

identical for SU(3) and SO(3), the resulting discrete Gf − Gf − U(1)Y anomaly condi-

tions are identical too. Of course, for an embedding into SO(3) no cubic anomaly exists.

Interestingly, even an SU(3) origin of the finite groups S4, D5, and S3 does not yield a

discrete cubic anomaly condition. Only in the case of A4, the second condition of eq. (6.7)

is rendered useless because A4 could originate in SO(3) instead of SU(3). For the sake of

quick reference for flavor model builders, we summarize the discrete anomaly conditions

together with the necessary discrete indices in appendix C.

We emphasize that they are obtained under the assumption of an underlying anomaly-

free gauge symmetry Gf . In the case where Gf = U(1), it can be argued that the result-

ing linear discrete anomaly conditions are identical to the requirement that the effective

instanton vertex for the SM gauge theory respect the remnant ZN symmetry [54]. How-

ever, non-perturbative effects cannot explain the condition arising from the cubic anomaly

U(1) − U(1) − U(1), although it carries interesting information about the necessity of

fractionally charged particles. Similarly, the instanton argument can also be applied to

non-Abelian discrete symmetries (see e.g. ref. [55]). It is however beyond the scope of this

paper to investigate the relations between the discrete anomaly conditions of eqs. (6.3)–

(6.9) and the constraints arising from the requirement that the non-perturbative processes

be invariant under the respective discrete symmetry.

In the following section we apply our anomaly conditions to some existing flavor models

to see whether or not their preferred non-Abelian finite symmetry can be a remnant of

SU(3) or SO(3), respectively.
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7. Case studies

In order to illustrate the use of our work we examine some existing models of flavor. Since

the SM quarks and leptons belong to the light particle spectrum, the discrete anomaly

conditions can only be evaluated if the assignment of these fermions to irreps of the finite

group G is completely given. Depending on the model, the right-handed neutrinos νc might

also remain massless after Gf is broken down to G. Particularly in supersymmetric models

one encounters additional fermionic degrees of freedom which in general may contribute to

the discrete anomalies. Here, we restrict our study to models where this is not the case, i.e.

only the SM fermions (possibly including νc) contribute to the discrete anomaly equations,

whereas other fermions are either absent, transform trivially under G, or have G-invariant

bilinear mass terms.6

We first note that the sum of the hypercharges of all quarks and leptons is zero,

i.e. the SM does not have a Gravity − Gravity − U(1)Y anomaly. Therefore the mixed

discrete anomaly G −G−U(1)Y vanishes identically if the SM fermions all live in the same

representation of the finite group G. This is the case for the models of refs. [15, 17, 21, 31].

The discrete symmetries employed in [15, 17] are Z7 ⋊ Z3 and ∆(27), respectively, which

can only be embedded in SU(3). One therefore still has to check the discrete cubic anomaly.

With the fermions transforming as triplets of G in both cases, we have

∑

i=light

Ãi =
∑

i=light

1 = 16 .

The comparison with eqs. (6.4) and (6.5) shows that both models are not discrete anomaly

free and therefore incomplete: they require additional fermions which do not acquire mass

when SU(3) is broken down to the discrete family symmetry G.

As mentioned above, the models of refs. [21, 31] have no mixed discrete anomaly

G − G − U(1)Y . Since the applied family symmetries S4 and A4 are subgroups of SO(3),

these models are not constrained by the cubic anomaly condition and therefore discrete

anomaly free. Similarly, one has to check only the mixed discrete anomaly for the examples

listed in table 6. In all models, the SM fermions are the only particles contributing to the

discrete anomaly, which is therefore determined solely by the assignment of the quarks and

leptons to irreps of G. Whenever the value for the discrete anomaly, given in the rightmost

column, is non-zero, the model is not discrete anomaly free, i.e. it is necessary to include

additional light fermions or, alternatively, heavy fermions with fractional hypercharges.

8. Conclusion

In recent years, many flavor models invoking the operation of a non-Abelian discrete family

symmetry have been suggested to explain the tri-bimaximal leptonic mixing pattern. This

plethora of possibilities asks for criteria to assess the viability of a model. In our study we

have formulated the consequences of embedding non-Abelian discrete symmetries G into a

continuous gauge symmetry Gf . Mathematical consistency requires the underlying gauge

6For G ⊂ SO(3), light fermions with zero hypercharge do not enter the anomaly equation either.

– 21 –



J
H
E
P
0
7
(
2
0
0
8
)
0
8
5

Group refs. Q uc dc L ec
∑

ℓ̃iYi

A4 [24, 25, 29] 3 1,1′,1′ 1,1′,1′ 3 1,1′,1′ 0mod 12

A4 [24] 3 3 3 3 1,1′,1′ 6mod 12

A4 [24, 26, 29] 1,1,1 1,1,1 1,1,1 3 1,1′,1′ 6mod 12

A4 [30] 3 1,1,1 1,1,1 3 1,1,1 0mod 12

A4 [32] 1,1,1 1,1,1 1,1,1 1,1′,1′ 3 6mod 12

D5 [37] 1,22 1,21 1,21 1,22 1,21 0mod 20

S3 [44] 1,1,1 1,1,1 1,1,1 1,2 1,2 0mod 12

S3 [45] 1,2 1,1,1 1,1,1 1,2 1′,1′,1′ 3mod 12

Table 6: With the particle content given in these existing flavor models, only the SM fermions

contribute to the mixed discrete anomaly. Thus the assignment of the quarks and leptons to irreps

of a finite group determines whether a model is discrete anomaly free.

theory to be anomaly free; this translates to discrete anomaly conditions after the breaking

of Gf . A model builder’s toolbox for quickly checking the discrete anomaly conditions of

a model is provided for in appendix C.
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A. Obtaining all SU(3) representations successively

It is well known that the irreps of SU(3) can be constructed from solely the fundamental

triplet. Still, in the inductive step of our proof of eq. (2.6) we check the validity of this

equation not only for ρ⊗3 but also for ρ⊗3. Considering the 3 as well can potentially add

new constraints to the definition of the discrete indices. For example, without the 3, the

first table of appendix B suggests that the discrete cubic indices of PSL2(7) could be defined

modulo NA = 28; however, the lower half of the table reveals that, in fact, we need NA = 14.

To better understand the reason for why the 3 must be included in our proof, let us

discuss all possible ways for obtaining the 15 of SU(3) by multiplying the 3 with some
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smaller irrep for which eq. (2.6) shall hold. From the Young tableau of the 15

,

it is obvious that there are only two smaller irreps which, after multiplication with the 3,

include the 15. The corresponding products are

⊗ = ⊕ ⊕ ,

⊗ = ⊕ .

In both cases, we obtain the 15 and another new irrep for which the validity of eq. (2.6)

has not been shown.7 Therefore, with multiplications by σ = 3, we can only prove that

eq. (2.6) holds true for a sum of two new irreps.

This shortcoming can be overcome by adding the choice of σ = 3. Then, all irreps can

be successively generated with only one new irrep appearing on the right-hand side of the

corresponding products. Assume that we knew all irreps of the form

1 2 · · · k , 1 2 · · · k
1

, (A.1)

with 1 ≤ k ≤ K. Notice that the case with k = 1 comprises the basis of our proof by

induction; hence we must initially show that eq. (2.6) is true for both, the 3 and the 3.

We now determine the two products

1 2 · · · K ⊗ = 1 2 · · · K ⊕ 1 2 · · · K , (A.2)

1 2 · · · K ⊗ = 1 2 · · · K ⊕ 2 · · · K . (A.3)

The second irreps on the right-hand sides of eqs. (A.2) and (A.3) are already known. The

first ones are new and extend eq. (A.1) to k ≤ K+1. This shows that the irreps in eq. (A.1)

can be obtained with arbitrary k ∈ N.

We can now fill up the second row of the Young tableaux by multiplications with 3.

Assume that the irreps of the form

1 2 · · · k
1 2 · l

, (A.4)

are known for arbitrary k ∈ N and 1 ≤ l ≤ L. Notice that the case L = 1 is nothing but

the second Young tableau of eq. (A.1). Then

1 2 · · · k
1 2 · L

⊗ = 1 2 · · · k
1 2 · L

⊕ 1 2 · · · k
1 2 · L

⊕ 2 · · · k
2 · L

.

7One might have the impression that the 6 in the first product should automatically satisfy eq. (2.6).

This however is incorrect since, for the cubic index, we cannot infer that −A(6) = A(6) = eA(6) mod NA

from the validity of A(6) = eA(6) mod NA only. One must prove eq. (2.6) separately for the 6.
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Only the first irrep on the right-hand side is a new one and extends eq. (A.4) to l ≤ L + 1,

and thus to arbitrary l ∈ N. Therefore any irrep of SU(3) can be generated successively

by multiplication with 3 and 3 in a way that only one new irrep occurs on the right-hand

side of the tensor product.8

B. The proof of eq. (2.11) for PSL2(7) and Z7 ⋊ Z3

This appendix shows the explicit values of f i
I (σ) and f i

I(σ) for the finite groups PSL2(7)

and Z7 ⋊ Z3. They are calculated from eqs. (3.2)–(3.4) with the discrete indices given in

table 3. The comparison proves that eq. (2.11) is satisfied for all i. Therefore our definition

of the discrete indices is consistent.

PSL2(7) Quadratic Index ℓ (Nℓ = 24) Cubic Index A (NA = 14)

i f i
ℓ (3) f i

ℓ (3) f i
A(3) f i

A(3)

0 1 + 0 = 1 1 = 1 1 + 0 = 1 1 = 1
1 3 + 3 = 6 1 + 5 = 6 3 + 3 = 6 −1 + 7 = 6
2 3 + 3 = 6 0 + 6 = 6 3 − 3 = 0 0 + 0 = 0
3 6 + 15 = 21 1 + 14 + 6 = 21 6 + 21 = 27 −1 + 0 + 0 = −1
4 7 + 42 = 49 5 + 14 + 6 = 25 7 + 0 = 7 7 + 0 + 0 = 7
5 8 + 18 = 26 1 + 5 + 14 + 6 = 26 8 + 0 = 8 1 + 7 + 0 + 0 = 8

i f i
ℓ (3) f i

ℓ (3) f i
A(3) f i

A(3)

0 1 + 0 = 1 1 = 1 −1 + 0 = −1 −1 = −1
1 3 + 3 = 6 0 + 6 = 6 −3 + 3 = 0 0 + 0 = 0
2 3 + 3 = 6 1 + 5 = 6 −3 − 3 = −6 1 + 7 = 8
3 6 + 15 = 21 1 + 14 + 6 = 21 −6 + 21 = 15 1 + 0 + 0 = 1
4 7 + 42 = 49 5 + 14 + 6 = 25 −7 + 0 = −7 7 + 0 + 0 = 7
5 8 + 18 = 26 1 + 5 + 14 + 6 = 26 −8 + 0 = −8 −1 + 7 + 0 + 0 = 6

Z7 ⋊ Z3 Quadratic Index ℓ (Nℓ = 3) Cubic Index A (NA = 7)

i f i
ℓ (3) f i

ℓ(3) f i
A(3) f i

A(3)

0 1 1 1 1
1 + 2 5 2 2 2

3 6 3 6 −1
4 6 3 0 0

i f i
ℓ (3) f i

ℓ(3) f i
A(3) f i

A(3)

0 1 1 −1 −1
1 + 2 5 2 −2 −2

3 6 3 0 0
4 6 3 −6 1

8It is worth mentioning that this method can be generalized to Lie groups other than SU(3). Then σ

has to take all irreps associated with the fundamental weights: for example, in SU(4) these are 4, 6, 4.

Thanks to Dr. Yuji Tachikawa for pointing this out.
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G ⊂ SU(3) PSL2(7) Z7 ⋊ Z3 ∆(27)

3 : 1 1′ : 1/2 2 12l : x2l

3 : 1 1′ : 1/2 2 12l−1 : x2l

ℓ̃(ri) 6 : 5 3 : 1 1 3 : 1

7 : 14 3 : 1 1 3 : 1

8 : 6
∑

i=light ℓ̃iYi 0 mod 24 0 mod 3 0 mod 3

3 : 1 1′ : y 12l : y2l

3 : − 1 1′ : − y 12l−1 : − y2l

Ã(ri) 6 : 0 3 : 1 3 : 1

7 : 0 3 : − 1 3 : − 1

8 : 0
∑

i=light Ãi 0 mod 7 0 mod 7 0 mod 9

Table 7: The discrete indices for the irreps of PSL2(7), Z7 ⋊ Z3, and ∆(27) together with the

corresponding discrete anomaly conditions.

G ⊂ SO(3) S4 A4 D5 S3

1′ : 13 − x 1′ : 2 8 1′ : 5/2 25/2 1′ : −3/2 9/2

ℓ̃(ri) 2 : 5 − x 1′ : 2 8 21 : −3/2 17/2 2 : 5/2 17/2

31 : x 3 : 1 1 22 : 13/2 33/2

32 : 1
∑

i=light ℓ̃iYi 0 mod 24 0 mod 12 0 mod 20 0 mod 12

Table 8: The discrete indices for the irreps of S4, A4, D5, and S3 together with the corresponding

discrete anomaly conditions.

C. Toolbox for model builders

In this appendix we collect all the results of our study which are relevant for flavor model

building. We tabulate the discrete indices for each finite group, now taking into account

the constraints from the mass terms discussed in section 6. Thus some of the parameters of

tables 3 and 4 are fixed. Others remain undetermined and the discrete anomaly conditions

must be satisfied for arbitrary values. Only in the case of ∆(27) the parameters x2l with

l = 1, . . . , 4 are additionally constrained by the condition
∑4

l=1 x2l = 0. For the groups

Z7⋊Z3, A4, D5, and S3 there are two inequivalent ways to assign discrete quadratic indices.

Therefore, anomaly freedom of the underlying continuous family symmetry Gf requires that

the anomaly conditions be satisfied for both of these choices separately. When calculating

the discrete anomaly G−G−U(1)Y it is necessary to choose the normalization with YQ = 1.
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Table 7 shows the finite groups which are subgroups of SU(3) only. Therefore the

discrete cubic anomaly provides a useful condition. In table 8 we list the finite groups

which can be considered as subgroups of SO(3) as well. Hence, the discrete cubic anomaly

condition of A4 ⊂ SU(3) is omitted, see section 6.
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